Recently, the France-based WIDGeT consortium emerged from a collaboration between Sanofi, WhiteLab Genomics, the TaRGeT Laboratory at Nantes University, and Institut Imagine. Scientists and companies in this consortium hope to speed up the development of gene therapies based on adeno-associated viruses (AAVs) for rare diseases by combining next-generation AAV vectors and artificial intelligence (AI).
“Gene therapies present some of the most promising avenues in modern medicine, yet they come with significant challenges that must be overcome,” says David Del Bourgo, CEO and co-founder of WhiteLab Genomics. “Key among these is the need to minimize the dosage of gene therapies administered to patients while concurrently devising more targeted delivery vectors.” To address these challenges, Del Bourgo points out the need for learning more about the immune response to AAVs and enhancing manufacturing processes, including the development of versatile AAV-producing cell lines.
“The WIDGeT initiative aims to catalyze advances in gene therapy through several strategic objectives, including drafting novel AAV vectors capable of effectively targeting and transducing traditionally challenging cell types, such as microglia and kidney cells,” Del Bourgo says. Part of this will depend on the “enhancement of WhiteLab Genomics’ machine learning algorithms, which are critical in predicting the productivity and stability of AAV capsids,” Del Bourgo adds. “These advanced algorithms will inform the selection of optimal AAV-vector candidates and improve upstream-processing conditions for more efficient AAV-vector production.”
Achieving these objectives will require the diverse capabilities of the groups behind the WIDGeT consortium. Del Bourgo says that these capabilities “range from AI expertise to develop a rational, guided approach for a specific cell type to expertise from a pharmaceutical partner, which will be necessary to advance new molecules through clinical validation in order to eventually launch them on the market.”
Those objectives span a wide range of challenges in improving AAV-based gene therapies, and the process will depend on ongoing financial support. As Del Bourgo concludes: “Ultimately, what is required are significant investments to bring AI-designed molecules into clinical phases, along with robust models and bioproduction processes.”

Check out our AAV CDMO service to expedite your gene therapy research
PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.
Related News
Navega Therapeutics Receives $4 Million CIRM Grant to Advance Epigenetic Gene Therapy for Chronic Pain
SAN DIEGO, CA – February 4, 2025 – Navega Therapeutics, a pioneering biotechnology company developing cutting-edge epigenetic gene therapies, today announced a significant milestone with the receipt of a $4 million Translational Science grant from the California...
Akribion Therapeutics Secures €8 Million in Seed Financing to Advance Novel RNA-Guided Cell Depletion Technology
ZWINGENBERG, Germany, February 4, 2025 – Akribion Therapeutics, a biotechnology company pioneering a unique, RNA-guided, nuclease-based technology for programmable cell depletion, today announced the closing of an €8 million Seed financing round. The round was led by...
UF-Kure19 CAR-T Cell Therapy Demonstrates High CR Rates, Low Toxicity in R/R NHL
Treatment with UF-Kure19, a rapidly manufactured CAR T-cell therapy, led to complete responses (CR) and low toxicity in patients with relapsed/refractory non-Hodgkin lymphoma, according to data from a single-arm, mult-center phase 1 study (NCT05400109) presented at...
Opinion: Companies Vie to Develop a Hunter Syndrome Therapy That Reaches the Brain
Several companies—including JCR Pharmaceuticals, Denali Therapeutics and Regenxbio—have products in the pipeline that could improve treatment options for this rare disease. Hunter syndrome is a rare, X‐linked disease caused by a deficiency of the lysosomal enzyme...
Related Services