
In vivo genome editing in mouse restores dystrophin expression in Duchenne muscular dystrophy patient muscle fibers
Brief intro:
- Author: Menglong Chen, Hui Shi, Shixue Gou, Xiaomin Wang, Lei Li, Qin Jin, Han Wu, Huili Zhang, Yaqin Li, Liang Wang, Huan Li, Jinfu Lin, Wenjing Guo, Zhiwu Jiang, Xiaoyu Yang, Anding Xu, Yuling Zhu, Cheng Zhang, Liangxue Lai, and Xiaoping Li
- Journal: Genome Medicine
- Doi: https://www.doi.org/10.1186/s13073-021-00876-0
- Publication Date: 2021 Apr 12
Products/Services used in the paper
Quotation shows PackGene:CRISPR AAV vectors were generated by PackGene Biotech.
Research Field:Muscle
AAV Serotype:AAV9
Targeted organ:DMD muscle fibers
Animal or cell line strain:NSI mice/PDX mouse
Abstract
Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD.
About PackGene
PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.
