
Brief intro:
- Author: Xiaobo Wang, Mary P. Moore, Hongxue Shi, Yang Xiao, Jiayu Zhang, Lanuza A. P. Faccioli, Zhiping Hu, Shareef Khalid, Danish Saleheen, Dwayne G. Stupack, Tatiana Kisseleva, Alejandro Soto Gutierrez, Mitchell A. Lazar & Ira Tabas
- Journal: Nature Metabolism
- Doi: https://www.doi.org/10.1038/s42255-025-01355-1
- Publication Date: 2025/9/26
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) is the leading cause of chronic liver disease, but an incomplete understanding of MASH-induced liver fibrosis has limited therapeutic options. Here we show that hepatocyte caspase-8 drives MASH fibrosis through an apoptosis-independent mechanism. Hepatic caspase-8 expression correlates with liver fibrosis in both human and experimental MASH, and hepatocyte-specific caspase-8 deletion in male mice with MASH suppressed liver fibrosis and hepatic stellate cell (HSC) activation without affecting hepatocyte apoptosis. Mechanistic studies showed that a caspase-8–YY1 pathway in hepatocytes induces secretory meteorin (Metrn), which activates HSCs via a c-Kit–STAT3 pathway. Meteorin expression was increased in human and male mouse MASH livers and decreased by deletion of hepatocyte caspase-8 in MASH mice and human and mouse primary hepatocytes. Genetic restoration of hepatocyte meteorin in hepatocyte-caspase-8-deleted MASH mice restored HSC activation and liver fibrosis while silencing hepatocyte meteorin lowered liver fibrosis. These findings reveal a therapeutically targetable pathway promoting MASH fibrosis involving a non-apoptotic function of caspase-8 and a newly discovered HSC activator, meteorin.
About PackGene
PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.
