Enhancing prime editor flexibility with coiled-coil heterodimers

share:

Brief intro:

  • Author: Shuangshuang Mu, Qianru Li, Xiaoyi Liu, Wei Zheng, Qin Jin, Kepin Wang & Hui Shi
  • Journal: Genome Biology
  • Publication Date: 2024 Apr 26

Products/Services used in the paper

Request Quote

Abstract

Background
Prime editing enables precise base substitutions, insertions, and deletions at targeted sites without the involvement of double-strand DNA breaks or exogenous donor DNA templates. However, the large size of prime editors (PEs) hampers their delivery in vivo via adeno-associated virus (AAV) due to the viral packaging limit. Previously reported split PE versions provide a size reduction, but they require intricate engineering and potentially compromise editing efficiency.

Results
Herein, we present a simplified split PE named as CC-PE, created through non-covalent recruitment of reverse transcriptase to the Cas9 nickase via coiled-coil heterodimers, which are widely used in protein design due to their modularity and well-understood sequence-structure relationship. We demonstrate that the CC-PE maintains or even surpasses the efficiency of unsplit PE in installing intended edits, with no increase in the levels of undesired byproducts within tested loci amongst a variety of cell types (HEK293T, A549, HCT116, and U2OS). Furthermore, coiled-coil heterodimers are used to engineer SpCas9-NG-PE and SpRY-PE, two Cas9 variants with more flexible editing scope. Similarly, the resulting NG-CC-PE and SpRY-CC-PE also achieve equivalent or enhanced efficiency of precise editing compared to the intact PE. When the dual AAV vectors carrying CC-PE are delivered into mice to target the Pcsk9 gene in the liver, CC-PE enables highly efficient precise editing, resulting in a significant reduction of plasma low-density lipoprotein cholesterol and total cholesterol.

Conclusions
Our innovative, modular system enhances flexibility, thus potentially facilitating the in vivo applicability of prime editing.

About PackGene

PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.

Download