
Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into nonhuman primates and mice
Brief intro:
- Author: Zachary C.E. Hawley, Shaolong Cao, Fergal Casey, Yi Luo, Shukkwan K. Chen, Raquel Costa, Yuqing Liu, Twinkle Chowdhury, Pete Clarner, Edward Guilmette, David Koske, Patrick Trapa, Denitza Raitcheva, denitza.raitcheva@gmail.com, Shih-Ching Lo
- Journal: Molecular Therapy
- Publication Date: 2024 Nov 18
Abstract
Dorsal root ganglion (DRG) toxicity has been consistently reported as a potential safety concern after delivery of adeno-associated viruses (AAVs) containing gene replacement vectors but has yet to be reported for RNAi-based vectors. Here, we report DRG toxicity after AAV intra-CSF delivery of an RNAi expression construct—artificial miRNA targeting superoxide dismutase 1 (SOD1)—in nonhuman primates (NHPs) and provide evidence this can be recapitulated within mice. Histopathology evaluation showed that NHPs and mice develop DRG toxicity after AAV delivery, including DRG neuron degeneration and necrosis, and nerve fiber degeneration that were associated with increases in cerebrospinal fluid (CSF) and serum phosphorylated neurofilament heavy chain (pNF-H). RNA-seq analysis of DRGs showed that dysregulated pathways were preserved between NHPs and mice, including increases in innate/adaptive immune responses, and decreases in mitochondrial- and neuronal-related genes following AAV treatment. Finally, endogenous miR-21-5p was upregulated in DRGs of AAV-treated NHPs and mice. Increases in miR-21-5p were also identified within the CSF of NHPs, which significantly correlated with pNF-H, implicating miR-21-5p as a potential biomarker of DRG toxicity in conjunction with other molecular analytes. This work highlights the importance of assessing safety concerns related to DRG toxicity when developing RNAi-based AAV vectors for therapeutic purposes.
About PackGene
PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.
