Role of RIPK3 in lipid metabolism and postnatal overfeeding-induced metabolic disorders in mice

share:

Brief intro:

  • Author: Dandan zhu, Jiasi Kuang, Xueting Deng, Wei Zhou
  • Journal: The Journal of Nutritional Biochemistry
  • Publication Date: 2024 Jan 12

Products/Services used in the paper

Request Quote

Abstract

Postnatal overfeeding can increase the long-term risk of metabolic disorders, such as obesity, but the underlying mechanisms remain unclear and treatment approaches are limited. Receptor-interacting protein kinase 3 (RIPK3) is associated with several metabolic diseases. We investigated the effects of RIPK3 on neonatal overfeeding-related metabolic disorders. On postnatal day 3, litter sizes were adjusted to 9-10 (normal litters, NL) or 2-3 (small litters, SL) mice per dam to mimic postnatal overfeeding. After weaning, NL and SL mouse were fed normal diet. We generated an adeno-associated virus (AAV) carrying short hairpin RNA (shRNA) against Ripk3 and an empty vector as a control. The NL and SL groups were treated intravenously with 1×1012 vector genome of AAV vectors at week 6. The SL group showed a higher body weight than the NL group from week 3 of age through adulthood. At weeks 6 and 13, the SL group exhibited impaired glucose and insulin tolerance, RIPK3 up-regulation, and lipid accumulation in liver and adipose tissues. In the SL group, the genes involved in lipid synthesis and lipolysis were increased, whereas fatty acid β-oxidation-related genes were weakened in adipose tissue and liver. At week 13, AAV-shRNA-Ripk3 ameliorated adipose tissue hypertrophy, hepatic steatosis, insulin resistance, and dysregulated lipid metabolism in the adipose tissue and liver of SL mice. These findings support a novel mechanism underlying the pathogenesis of postnatal overfeeding-related metabolic disorders and suggest potential therapeutic targets.

About PackGene

PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.

Download