Analytical dissection of minor glycoforms and glycoprotein associations in rAAV preparations by multimodal glycoproteomics: Kuno et al.

share:

Brief intro:

  • Author: Atsushi Kuno, Hiroaki Sakaue, Sachiko Koizumi, Azusa Tomioka, Saho Mizukado, Yuki Yamaguchi, Mitsuko Fukuhara, Yasuo Tsunaka, Hiroyuki Kaji & Susumu Uchiyama
  • Journal: Analytical and Bioanalytical Chemistry
  • Doi: https://www.doi.org/10.1007/s00216-025-06042-4
  • Publication Date: 2025/8/7

Products/Services used in the paper

Request Quote

Abstract

Accurate glycan analysis of viral vectors is essential for evaluating pharmaceutical quality. Recent advances in mass spectrometry–based analytical technologies have achieved glycosylation detection in adeno-associated viruses (AAVs). However, because only a minor subpopulation (< 1%) of recombinant AAV (rAAV) particles may carry glycans or associate with glycoproteins, distinguishing genuine AAV glycosylation from that of co-purified glycoproteins remains technically challenging, highlighting the need for analytical strategies that minimize glycan misassignment and reliably identify glycoprotein interactions. Here, we present a multimodal glycoproteomic approach to discriminate rare glycosylation events on rAAV capsids from glycosylated host-derived proteins associated with the particles. We employed an ultrasensitive lectin microarray coupled with a broadly reactive anti-AAV antibody to detect O-glycan-binding lectin signals in several rAAV preparations. Notably, a distinct signal was observed for Urtica dioica agglutinin (UDA). Subsequent liquid chromatography-tandem mass spectrometry, combined with UDA-based dual enrichment at both protein and peptide levels, identified a divalently high-mannose N-glycosylated peptide derived from the host AAV receptor (AAVR). Monovalent high-mannose N-glycopeptides of AAVR and Mac-2 binding protein were additionally detected using single-step protein-level enrichment, indicating an avidity-driven UDA binding mechanism. However, no N-glycosylation was detected on the rAAV capsids themselves. These findings underscore the value of integrated multimodal glycoproteomic workflows for resolving low-abundance glycosylated species and offer new insights into host-derived hitchhiker glycoproteins that may affect rAAV characterization and quality control.

About PackGene

PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.

Download

Login

Don't have an account? Please register
Account*
Password*
Code*
Refresh
Forgot password?
Logging in indicates that you have read and accepted the Registration Agreement and User Agreement
Log in with other accounts

New User Registration

Already have an account?
First Name*
Middle Name
Last Name*
Organization*
Organization Type*
Country/State*
Email Address*
Set Password*
Confirm password*
Refferal Code*

Reset Password

Return to
Email*
Code*
New password*
Confirm password*

Google Account Binding

Organization*
Organization Type*
Country/State*